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Abstract— State-of-the-art technologies in very large scale
integration (VLSI) aim at the realization of fast but low-power
consuming circuits. Recent technological advents offer a design
parameter with which both the processing speed and power
consumption of every single gate, which isthe basic building
block of any circuit, can be fine tuned. With respect to this design
parameter, a VLSI design constitutes a multi-dimensional multi-
modal optimization problem, for which previous research has al-
ready developed some problem-specific optimization procedures.
But since they yield results worse than engineers, this paper
investigates how genetic algorithms perform in this application
domain. It turns out that in comparison to the procedures
mentioned above, genetic algorithms are able to reduce the
power consumption by about 10-40 %. These achievments are
practically relevant, since they extend the circuits’ times-of-
operation by the same amount. In addition, this paper also
considers some problem-specific variations, which significantly
speed up the optimization process.

I. I NTRODUCTION

Off-the-shelf products offered virtually everywhere indicate
that the processing speed of digital devices, such as desktop
computers, laptops, personal digital assistents, cellular phones,
and the like, is of high importance to many end-users. In other
words, end-users expect their devices to operate at a processing
speed ashigh as possible. With respect tomobile devices,
the markets today also suggest another trend: mobile devices
are expected to yield times-of-operation as long as possible,
probably in order to maximize the end-user’s independence on
electrical wires.

The issue of a suitable power supply, e.g., by means of
rechargeable batteries, becomes even more important insmall
mobile devices, such as cellular phones and personal digital
assistants. For example, most end-users would probably not
accept, if the battery was larger and/or heavier than the
actual cellular phone. High processing speed and long time-of-
operation are probablythe driving forces for research on low-
power technologies. Consequently, current research on low-
power VLSI technologies [2], [7], [8], [14], [15] tries, among
other aspects, to minimize a circuit’s energy consumption
without tampering its processing speed.

As Section II briefly reviews, an integrated circuit consists
of very many interconnected gates. A particular design param-
eter, called the gate threshold-voltageVTH , determines both
a gate’s energy consumption and its processing speed. Due
to technological reasons, these two parameters are inversely
correlated; they compete with each other by their very nature.

Fortunately, not all gates have the same importance with
respect to the circuit’s overall processing speed. Thus, some
gates must work at the highest processing speed possible, con-
suming high amounts of energy, wheras others can be slowed
down, which conserves valuable energy resources. From an
optimization point of view, thegoal is to obtain the fastest
processing speed by paying minimal energy consumption.
Theoretically, this combinatorial optimization problem is NP-
hard for the general case.

Section II also briefly reviews previous research [14], [15],
[18], [19], which has developed some special-purpose algo-
rithms for the problem at hand. Even though these algorithms
yield quite encouraging results, a comparison with human-
optimized designs indicates that these solutions are only sub-
optimal. Apparently, the algorithms got stuck at sub-optimal
solutions, also known as diverting local optima in the pertinent
literature on optimization.

Since the optimization procedures mentioned above do not
reliably yield optimal solutions, this paper applies evolutionary
algorithms to the problem at hand. Evolutionary algorithmsare
heuristic population-based search procedures that incorporate
random variation and selection. This paper focuses on the
application of a particular instance, called genetic algorithms,
since both numerous experiments and theoretical analyses [1],
[5], [13] stress their superior global optimization performance
when applied to rather combinatorial optimization tastks,such
as the optimization problem at hand, especially in the presence
of unwanted local optima. Therefore, Section III presents a
short description of this class of algorithms. Standard genetic
algorithms do not exploit any problem-specific properties.
Thus, Section III also proposes a few problem-specific en-
hancements, in order to accelerate the optimization process.

In order to allow for an evaluation, this paper applies se-
lected evolutionary algorithms to some rather standard design
problems, which are drawn from the ISCAS benchmark suite
[6]. Section IV provides a short description of these tasks,and
also summarizes all the relevant parameter settings. The results
presented in Section V suggest that the selected algorithms
evolve designs better than those previously reported. The
results furthermore indicate that the modifications proposed
in Section III lead to a significant speed up. Finally, Section
VI concludes with a brief discussion.
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Fig. 1. A simple CMOS-circuit with different path delays, caused by different numbers of gates in each path. The lower path is non-critical, and thus may
be subject to the implementation in slow high-voltage technology. Here,τ refers to the cumulated delays from the circuit’s input to the gate’s output, rather
than the gate’s individual delays.

II. BACKGROUND AND PREVIOUS RESEARCH

A digital VLSI circuit generally consists of very many gates
of different types, such asNAND, NOR, inverters, etc., and
varying numbers of inputs, which together realize the circuit’s
functionality, e.g., a network adapter, a microprocessor,or
something else. Each gate requires some time to process its
input data. This time is generally called the gate’s delayτ .
Figure 1 presents a simple example, which allows for the
following two observations: First, the delayτ is not equivalent
for all gates but depends on both the gate’s functionality1

and the number of inputs. Second, not all gates are equally
important for the circuit’s overall delay. In this example,the
upper path has more gates in sequence and thus constitutes
the circuit’s critical path, since it determines its overall delay,
whereas the lower path processes its signals faster anyhow.In
other words, the gates residing in the non-critical path could
be processing their signals at a lower speed without affecting
the circuit’s overall delay to some extent and thus could be
saving valuable energy, if that was technologically possible.

It might be well known to many readers that every gate
is realized by a certain number of transistors. A transistor’s
electrical characteristics depend, among other things, ona
specific design parameter, called the gate threshold-voltage
VTH . Given a specific technology, this parameter determines
both the transistor’s processing delay2 as well as its power
consumption. Conversaly, if either the transistor’s delayor
its power consuption is given, the other parameter is also
determined. Unfortunately, these two parameters are inversely
correlated by their very nature. That is, a transistor has either
a short delay and a high power consumption or vice versa.

It used to be that the very same threshold voltageVTH

had to be used forall transistors throughout the entire VLSI
circuit. State-of-the-art design technologies [2], [7], [8], [14],
[15], [18], [19], however, allow for using varying threshold

1Different functionalities requiere a different number of internal elements,
i.e., transistors, which influences a gate’s overall delayτ .

2On the transistor as well as gate level, the termdelay rather than processing
speed is more commonly used.

TABLE I

THIS TABLE SHOWS THREE DIFFERENT REALIZATIONS WITH THEIR

RESULTING DELAYS AND LEAKAGE CURRENTS FORNOR-2, NAND-2,

AND AN INVERTER, WITH THE NUMBER DENOTING THE NUMBER OF GATE

INPUTS.

NOR-2
66.3 ps 86.0 nA
78.0 ps 36.6 nA
90.0 ps 10.6 nA

NAND-2
42.9 ps 135.0 nA
51.3 ps 46.5 nA
58.3 ps 20.3 nA

INV
36.6 ps 92.8 nA
37.6 ps 62.5 nA
45.8 ps 12.6 nA

voltages for the transistors. The designer can thus fine tune
both the delay and the power consumption of every gate.
Table I provides three examples of three different realizations
with their resulting delays and leakage currents, which arethe
main contribution to the gate’s power consumption. For further
technological details, the interested reader is referred to [14],
[15].

By having the option of choosing from different gates, the
designer may select fast gates (consuming high energy) for
the critical path and slower gates (consuming low energy) for
the non-critical paths. By offeringp specific implementations
per gate, i.e., a specific combination of delay and energy
consumption, The design task consists of selecting a particular
implementation for every gate such that the circuit’s overall
delay is as short as possible and that simultaneously the cir-
cuit’s overall power consumption assumes a minimum. Once
particular gate implementations have been selected, state-of-
the-art design tools [] ??? frank sill fragen ??? automatically
determine both the circuit’s entire delay and its entire power
consumption.

With a total of g gates, the very same circuit can be
realized in potentiallyn=gp alternatives. Previous research
[9] has suggested thatp=3 different implementations per gate
are optimal3. Due to the possible interconnections between
different paths, this optimization problemcan be NP-hard in
the general case.

3Unfortunately, the literature [9] does not provide any substantial indication,
why p=3 is supposed to be optimal.
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For the task of finding optimal designs, previous research
[8], [14], [15], [18] has employed various algorithms, from
which two serve as a baseline for comparison purposes.
The first algorithm [14], denoted as SFA-I (straight-forward
algorithm, variant I) for short, starts off by using the slowest
implementation for all gates. It then accelerates the critical
path by substituting some of them with their fastest counter-
parts until either this path has turned into a non-critical one
or no further gates can be accelerated. This step is repeated
as long as it can change a critical path into a non-critical one.
Finally, all fast gates are substituted by the medium ones as
long as this does not affect the circuit’s overall delay.

The second algorithm [15], denoted as SFA-II for short,
is a modification of a previous development [10], [17]. It
starts off by selecting the fastest alternatives for all gates.
It then consecutively substitutes them with medium or slow
alternatives. In so doing, it prefers gates with a high fan-out.
The step is repeated until no further gate can be slowed down
without affecting the circuit’s overall delay. For furtherdetails,
the interested reader is referred to the literature [14], [15].

III. T HE EVOLUTIONARY APPROACH

The term evolutionary algorithms refers to a class of
heuristic population-based search procedures that incorporate
random variation and selection, and provides a framework
that mainly consists of genetic algorithms [5], evolutionary
programming [3], [4], and evolution strategies [11], [13].

Even though all evolutionary algorithm have their own
peculiarities, they share many common features. All evolu-
tionary algorithms maintain a population ofµ individuals, also
called parents. In each generation, an evolutionary algorithm
generatesλ offspring by copying randomly selected parents
and applying variation operators, such as mutation and recom-
bination. It then assigns a fitness value (defined by a fitness
or objective function) to each offspring. Depending on their
fitness, each offspring is given a specific survival probability.

By selecting certain individuals as parents, an evolutionary
algorithm advances from one generations to another. The two
most-commonly used selection schemes are denoted as either
(µ,λ) or (µ+λ). The first selection scheme, i.e., (µ,λ) indicates
that the algorithm chooses the parents for the next generation
only from the offspring, whereas the latter selection scheme
selects from the union of the previous parentsand the current
offspring; the latter form is also known asµ-fold elitism.

As has been discussed above and exemplified in Table I, all
gates can be configured with three different leakage currents4.
Therefore, the optimization problem at hand isdiscrete by its
very nature for which the traditional form of genetic algo-
rithms is particularly suited. In the experimental comparisons,
these algorithms are denoted as (µ+λ)-GA or (µ,λ)-GA for
short. The other evolutionary algorithm variants, particularly
evolutionary programming and evolution strategies, arerather

4It should be noted that the actual values of the leakage currents are not
equivalent for all gates, but depend on their number of inputs, functionality,
and other parameters.

tailored to continuous parameter optimization and are thusnot
further considered in this paper.

In order to be optimizable for a genetic algorithm, this paper
adopts a direct coding in which every gate is represented by a
particular gene, which codes for the particularly chosen gate
threshold-voltageVTH . Thus, a device that consists ofn gates
is represented by a genome ofn positions with each being
able to assume three different values (see above and also [9]).

The genetic algorithms described above are rather generic
and do not account for any problem-specific property. In the
problem at hand, for example, it does not make sence to
mutate any gate of the critical path(s); they have to be as fast
as possible. Therefore, the first variation, denoted as (µ+, λ)-
NC-GA, considers only gates from non-critical path(s). The
chromosom length has to be reduced appropriately.

The second variation accounts for the following observation:
gates with many inputs and outputs are likely to be in many
different paths. Thus, several paths would benefit from a fast
implementation of such gates. Therefore, the mutation operator
might bebiased such that it chooses faster gates more often for
gates with higher-than-average connectivity, and slower ones
for gates with lower-than-average connectivity. To this end,
the algorithm calculates a correction value

ǫi =











0.15 : ci

maxici

> 0.8

−0.15 : ci

maxici

< 0.2

0 : else

. (1)

The probability of choosing a fast, normal (medium), or slow
implementation for gatei is thenpf = 1/3 + ǫi, pn = 1/3,
andps = 1/3 − ǫi, respectively. ??? frank, sind hier formeln
richtig ... ??? Genetic algorithms that employ this form of
biased mutations are denoted as (µ+, λ)-BM-GA for short.

IV. M ETHODS

All experiments were done by means of a state-of-the-art
design tool []. ??? frank sill fragen ??? To this end, the circuit’s
gate configuration is defined by anet-list, which specifies all
connections between the inputs and outputs of all gates. In
addition, the design tools reads a list, which specifies the
delay of all gates. Then, the design tool calculates both the
circuit’s delay and its power consumption. In order to ease the
implementation, this paper adopts a direct encoding in which
each allel directly codes the gate’s particular implementation
(see also Section II). In order to speed up the optimization
process, the fastest implementations are chosen for all gates.
Since each gate can choose its leakage current only from three
different values, the implementation of an appropriate mutation
operator is straight forward: it chooses the next lower or higher
value. In accordance with the literature [5], [12] a mutation
probability pm = 1/n with n denoting the number of gates
was chosen in all experiments.

Because the chromosom is not given in any particular gate
ordering, this paper employs uniform recombination, which
exchanges corresponding genes of two randomly selected
parents with a probabilitypr=0.5. Even though the literature
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[11] suggests thatµ=1 parent andλ=6 offspring yield the
highest sequential efficiency, this paper also considers larger
population sizes for comparitive purposes.

As has been outlined above, the fitness function should
incorporate both the network’s delay and its energy consump-
tion. Since the network’s delay is of primary interest (by
definition), the following fitness function has been used:

f = delay−
1

leakage
. (2)

Since the circuit’sdelay andleakage are of type integer and
strictly greater than zero,delay dominates the fitnessf .

In order to perform a comparative study, this paper has
selected the following five standard designs from the ISCAS
benchmark suite (for further details, see [6]):

C432 is a 27-channel interrupt controller [20] with a total
of 36 inputs and 7 outputs. The controller has 27
interrupt request inputs, which are grouped into 3
buses with 9 lines each. It has further 9 control
inputs, which activate/de-activate the associated in-
terrupt lines. The implementation of such an interrupt
controller, requires 160 gates.

C1355 is a 32-Bit single-error correcting circuit [21]. By uti-
lizing a (40,32) Hamming code matrix, it generates
a 8-bit long syndrom by reading the 32 input lines.
The 41 input lines are forwarded along with the 8-bit
syndrom to a correction unit. The implementation of
this device requires 546 gates.

C3540 is a 8-bit arithmetic-logical-unit (ALU) [22] with 50
inputs and 22 outputs. It realizes various arithmetic,
logical, BCD, shift, and other operations on 8 input
lines, and its implementation requires 1669 gates.

C5315 is an extension of theC3540-circuit [23], in that
it realizes a 9-bit ALU with 178 inputs and 123
outputs, which requires 2406 gates for its implemen-
tation.

C7552 is a device [24] that contains a 34-bit adder, a 34-
bit comparator, which requires an additional 34-
bit adder, and an 34-bit parity checker. The circuit
requires 3512 gates to map the 207 inputs onto 108
outputs.

For the realization, this paper used a previously developedgate
library [16], which is based on the 65 nm Berkeley predictive
technology models (BPTM). ??? frank: eine reference ???

V. RESULTS

Direct performance comparisons are not straight forward
for the following two reasons: first, two quality measures
are simultaneously subject to the optimization process, and
second, the optimization procedures considered in this paper
operate on different time scales. Therefore, this section starts
off with a detailed discussion of Figures 2-5, which show vari-
ous performance figures obtained on the ALU-design problem
C5315.

Figure 2 shows the evolution of both the delay and leakage
when using both a (1+6)-GA and a (1,6)-GA. Since the genetic
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Fig. 2. The evolution of both the circuit’s delay (y-axis on the left-hand-
side) and leakage (y-axis on the right-hand-side) when using (1+, 6)-genetic
algorithms for the C5315 problem
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Fig. 3. The evolution of both the circuit’s delay (y-axis on the left-hand-side)
and leakage (y-axis on the right-hand-side) when applying a straight-forward
optimization algorithm on the C5315 problem

algorithms initialize all gates with the fastest realizations, the
delay starts at 1955 ps and a (total) leakage of 272,600 nA.
During the corse of evolution, then, the leakage drops to almost
a fifth of that value, i.e., about 58,597 nA, without increasing
the circuit’s delay as requested. The small jitter of the jitter is
due to some imprecissions of some floating-point operations.
Since the performance graphs of both procedures are virtually
identical, the remainder of this section focuses on the “plus”
selection scheme and does not consider the other one.

For comparison purposes, Figure 3 presents the development
of both delay and leakage when using the procedures SFA-I
and SFA-II previously developed [14], [15]. It can be seen that
both procedures start off with a relatively large delay of about
2656 ps, but arrive at the same final value of 1955 ps after
about 150 to 250 iterations. In order to attain this improved
processing, both procedures have increased the leakage to
about 73,443 nA and 81,580 nA, respectively.

For a better comparison of the two parameters under op-
timization, Figures 4 and 5 combine those graphs into two
figures. To this end, the time scales, i.e.,x-axes, have been
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rescaled such that the time is normalized to a 100 time units.
It can be clearly seen that the circuit’s final delay arrive at
the same values (Figure 4), whereas the genetic algorithms
were able to improve the leakage by about 20-30% (Figure
5). This, however, came at the cost of a significant increase
in the computational requirements. With respect to the end-
users expectations on the time-of-operation, this additional
optimization effort might by worth it, especially since this has
to be done only once during the circuit’s design process.

Figures 6 to 9 show how the optimization procedures under
consideration evolve the leakage over time for the other four
design problems C432, C1355, C3540, and C7552, respec-
tively. As for the C5315 problem discussed first, all procedures
exhibit a similar behavior. Furthermore, all procedures arrive
at the same final delay (not shown in any figure) for each
problem.

The performance graphs may be summarized as follows: In
comparison to SFA-I, SFA-II constitutes a significant improve-
ment in that it requires shorter optimization time and often
yields lower leakage values. SFA-II increases the leakage by
substituting slow high-voltage gates by their fastest counter
parts, until the circuit has the shortest delay possible. Itthen
reduces the resulting leakage by also considering medium-
voltage gates.

The genetic algorithms by contrast, yielded the lowest
overall leakage and thus energy consumption values, but
required substantially more time. This observation goes in-
line with the pertinent literature [11]: evolutionary algorithms
are a general framework, which might be slower than special-
purpose procedures in many cases but have the ability to
escape from local optima, and are thus often able to yield
superior results. For comparison purposes, Table II presents
the final values for delay and leakage for all algorithms over
all problems considered in this paper.

In order to assess the utility of large population sizes,
Figures 10 and 11 illustrate the application of a (10+40)-GA
to the C432 and C5315 problems, respectively. A comparison
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with Figures 6 and 9, respectively, indicates that a (10+40)-
GA might be faster in terms of the number of generations
but significantly slower in terms of the number of functions
evaluations, which is the product of the number of generations
and the number of offspringλ.

VI. CONCLUSIONS

This paper has argued that processing speed and energy
consumptions are properties, which end-users consider im-
portant for mobile devices. It has been discussed that these
two parameters depend on each other due to technological
reasons. This paper has furthermore reviewed two optimization
procedures, which have been investigated in previous research.
Since previous research has led to optimized designs, which
are inferior to devices designed by humans, this paper has
applied genetic algorithms to this optimization problem. The
experimental results indicate that genetic algorithms were
able to reduce the leakage by about 10-40% as compared
to previously optimized designs. The results also indicate,
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however, that genetic algorithms require substantially more
computation time.

Future research will be dedicated to the investigate of
further optimization approaches, such as simulated annealing
and other evolutionary algorithm variants, Furthermore, future
research will be investigating to what extent an increase ofthe
numberp of different gate implementations can benificial for
the overall energy consumption.
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