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Motivation

On chip power dissipation → increases 
temperature

(Almost) all aging mechanism depend also 
on temperature

HotAging - How does power dissipation 
impact circuit degradation over time 

(aging)? 
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Outline

• Aging Mechanism

• Analysis Environment

• Results

• Conclusions
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Aging
• Bias Temperature Instability  (BTI)

 Electric field over oxide leads to accumulation of ‘traps’ into silicon-
oxide interface → vth increase

• Time-Dependent Dielectric Breakdown (TDDB)
 Tunneling current through gate oxide generates path from oxide to 

channel → vth increase
• Electromigration

 Transport of material caused by gradual movement of ions in wires 
→ delay increase
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Aging
• Time-Dependent Dielectric Breakdown (TDDB)

 Tunneling current through gate oxide generates path from oxide to 
channel → vth increase

• Bias Temperature Instability  (BTI)
 Electric field over oxide leads to accumulation of ‘traps’ into silicon-

oxide interface → vth increase
• Electromigration

 Transport of material caused by gradual movement of ions in wires 
→ delay increase

Acceleration due to higher 
Temperature
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Power and Temperature
• Power dissipation can be directly related to temperature

Power Map On-Die Temperature
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HotAging
• Principal analysis flow

netlist

HotAging

Determine 
critical aging 
input vector 

Aging-aware 
cell library

Extract activity

Determine 
max. delays

Determine 
Power profile

Delay & Power 
Analysis

Extract 
temperatures

HotSpot

Temp. impact 
on delay

Temp. impact 
on Guardband
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Aging-aware cell library
• Aging analysis on SPICE level
 Several models with good prediction
 High flexibility in terms of aging parameters
 Supported by EDA tools (e.g. Eldo, MOSRA, 

RelXpert)
 Inapplicable for designs > 1000 devices

• Analysis on cell level
 No support by industry
 Lower flexibility in terms of aging parameters
 Lower accuracy
 Applicable for >1M devices
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Aging-aware cell library
• Principal flow
 Based on (freely available) 45nm technology and cell library 

(FreePDK)
 BTI aging simulated via its impact on threshold voltage vth

and mobility µ
 Considered BTI factor: stress/recovery time via input duty-

cycle
 All parameters taken from literature
 All cell characterized for with Cadence Liberate / SPECTRE
 Note: temperature impact considered in later step
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Aging-aware cell library

• Aging aware characterization
 Duty-cycle (dc) varied in steps of 10% for all cell inputs 

→ each cell with 11 (1 input) and 121 (2 inputs) versions for 
different combinations of input signal probabilities

 17 cells (comb/seq)

• Example:
 INV1 with 40% dc: INV1_40
 NAND2 with 1st input 20% dc and 2nd input 70% dc: 

NAND2_20_70
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Hot-Aging Algorithm
• Observations
 Many aging mechanism are data-dependent
 Power dissipation is data-dependent

• Question: What would be a critical combination of input
vectors for maximum aging and power dissipation?

• Hot-Aging algorithm 
 Genetic algorithm
 Two phases:

1. Determination of critical aging input vector
2. In the following: determination of critical power input vectors
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Hot-Aging Algorithm

Netlist

Input vector

Invert bit (=mutation)

Fitness:
Nr. signals in critical 
paths @GND 
(worst case for NBTI)

1

6

If new best

Phase 1
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Hot-Aging Algorithm

Netlist

Input vector 2

Invert bit (=mutation)

Fitness:
Nr. signals in critical 
paths @GND + 
Switched capacitance

1

6

If new best

Phase 2

Input vector 1
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Consideration of Temp. impact
• Extraction of power dissipation and max. delay via Modelsim and 

Synopsys DesignCompiler for determined input vectors using aging-
aware cell library

• Extraction of temperature via HotSpot
• Temperature-dependent acceleration factor:

• With:
 Top – Actual temperature during operation
 T0 – Reference temperature (125oC)
 EaBTI – activation energy (0.58), 
 kB – Boltzmann's constant
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Consideration of Temp. impact
• Delay dependency (approx.) of vth and µ:

• Delay increase due to BTI over period of 10 years

• With:
 Δtd,T0 – Delay degradation if operated at T0 for 10 years
 td,init – Pristine delay
 t10 – 10 years
 α,β,γ – Extracted parameters for chosen technology
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Guard-band
• Guard-band (Δtguard): extra delay added to clock against

parameters variations (incl. due to aging)
• Extracted model for determining time until delay increase is 

beyond Δtguard

• With:
 δ,ε,φ – Extracted parameters for chosen technology
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Simulations
• 3 Analyses
 Aging without and with consideration of temperature
 Impact on guard-banding

• Input vectors
 Randomly generated (modeling typical use case)
 Critical case (GA) (can be malicious or unintentionally)

• Circuits from EPFL benchmark suite
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Results – Temp. increase
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Average: 
• Random inputs increase temperature by 16oC
• Hot-Aging increases temperature by 26oC
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Results – Delay incr. @ 27oC (10y)
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Average: 
• Random inputs increase delay by 12%
• Hot-Aging increases delay by 15%
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Results: Delay incr. @ Top (10y)

Increase doubled

Worst case: 
• Random inputs increase delay by 26%
• Hot-Aging increases delay by 40%
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Results: Time to miss 10% guard [months]

Circuit might fail 
within weeks/months
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Conclusions
• Exploration of relation between hardware degradation and 

temperature
• Analysis environment 

 Extraction of random and worst case input scenarios 
 Determination of how aging and temperature impact the circuit 

delay. 
• Results indicate

 If temperature is considered: degradation can increase by more 
than factor 2

 If guard-banding is applied: circuits can enter malfunction states 
within months (random case) or even within weeks (critical case). 

• There is a need for appropriate countermeasures
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