

HotAging — Impact of Power Dissipation on Hardware Degradation

<u>Frank Sill Torres</u>^{1,2}, Alberto Garcia Ortiz², Rolf Drechsler^{1,2}

¹CPS, DFKI GmbH, Bremen Germany ²University of Bremen, Germany

Motivation

On chip power dissipation → increases temperature

(Almost) all aging mechanism depend also on temperature

HotAging - How does power dissipation impact circuit degradation over time (aging)?

Outline

- Aging Mechanism
- Analysis Environment
- Results
- Conclusions

Aging

- Bias Temperature Instability (BTI)
 - Electric field over oxide leads to accumulation of 'traps' into siliconoxide interface $\rightarrow v_{th}$ increase
- Time-Dependent Dielectric Breakdown (TDDB)
 - Tunneling current through gate oxide generates path from oxide to channel $\rightarrow v_{th}$ increase
- Electromigration
 - Transport of material caused by gradual movement of ions in wires
 - → *delay* increase

Aging

- Time-Dependent Dielectric Breakdown (TDDB)
 - Tunneling current through gate oxide generates path from oxide to

channel $\rightarrow v_{th}$ increase

B

con-

Acceleration due to higher Temperature

ires

Power and Temperature

Power dissipation can be directly related to temperature

HotAging

Principal analysis flow

Aging-aware cell library

- Aging analysis on SPICE level
 - Several models with good prediction
 - High flexibility in terms of aging parameters
 - Supported by EDA tools (e.g. Eldo, MOSRA, RelXpert)
 - Inapplicable for designs > 1000 devices
- Analysis on cell level
 - No support by industry
 - Lower flexibility in terms of aging parameters
 - Lower accuracy
 - Applicable for >1M devices

Aging-aware cell library

- Principal flow
 - Based on (freely available) 45nm technology and cell library (FreePDK)
 - BTI aging simulated via its impact on threshold voltage v_{th} and mobility μ
 - Considered BTI factor: stress/recovery time via input dutycycle
 - All parameters taken from literature
 - All cell characterized for with Cadence Liberate / SPECTRE
 - Note: temperature impact considered in later step

Aging-aware cell library

- Aging aware characterization
 - Duty-cycle (dc) varied in steps of 10% for all cell inputs

 → each cell with 11 (1 input) and 121 (2 inputs) versions for
 different combinations of input signal probabilities
 - 17 cells (comb/seq)
- Example:
 - INV1 with 40% dc: INV1 40
 - NAND2 with 1st input 20% dc and 2nd input 70% dc: NAND2_20_70

Hot-Aging Algorithm

- Observations
 - Many aging mechanism are data-dependent
 - Power dissipation is data-dependent
- Question: What would be a critical combination of input vectors for maximum aging and power dissipation?
- Hot-Aging algorithm
 - Genetic algorithm
 - Two phases:
 - Determination of critical aging input vector
 - 2. In the following: determination of critical power input vectors

Hot-Aging Algorithm

Hot-Aging Algorithm

Consideration of Temp. impact

- Extraction of power dissipation and max. delay via Modelsim and Synopsys DesignCompiler for determined input vectors using agingaware cell library
- Extraction of temperature via HotSpot
- Temperature-dependent acceleration factor:

$$AF_{BTI}^{T_{op},T_0} = \exp\left[\frac{E_{aBTI} \cdot (T_{op} - T_0)}{k_B \cdot T_{op} \cdot T_0}\right]$$

- With:
 - T_{op} Actual temperature during operation
 - T_0 Reference temperature (125°C)
 - E_{aBTI} activation energy (0.58),
 - k_B Boltzmann's constant

Consideration of Temp. impact

Delay dependency (approx.) of v_{th} and μ:

$$t_d \propto \left[\mu^{-2} \left(V_{DD} - v_{th} - \Delta v_{th} \right)^2 \right]^{-1}$$

Delay increase due to BTI over period of 10 years

$$\Delta t_{d,T_{op}} = \frac{\Delta t_{d,T_0}}{\alpha \cdot t_{d,init}} \left(t_{10} \cdot A F_{BTI}^{T_{op},T_0} \cdot \beta \right)^{\gamma}$$

- With:
 - $\Delta t_{d,T0}$ Delay degradation if operated at T₀ for 10 years
 - $t_{d.init}$ Pristine delay
 - t_{10} 10 years
 - α, β, γ Extracted parameters for chosen technology

Guard-band

- Guard-band (Δt_{guard}): extra delay added to clock against parameters variations (incl. due to aging)
- Extracted model for determining time until delay increase is beyond Δt_{quard}

$$t_{age} = \delta \cdot \left(AF_{BTI}^{T_{op}, T_0}\right)^{-1} \left(\Delta t_{guard} \frac{\mathcal{E} \cdot t_{d, init}}{\Delta t_{d, T_0}}\right)^{\varphi}$$

- With:
 - $\delta, \varepsilon, \varphi$ Extracted parameters for chosen technology

Simulations

- 3 Analyses
 - Aging without and with consideration of temperature
 - Impact on guard-banding
- Input vectors
 - Randomly generated (modeling typical use case)
 - Critical case (GA) (can be malicious or unintentionally)
- Circuits from EPFL benchmark suite

Results – Temp. increase

- Random inputs increase temperature by 16°C
- Hot-Aging increases temperature by 26°C

Results – Delay incr. @ 27°C (10y)

- Random inputs increase delay by 12%
- Hot-Aging increases delay by 15%

Results: Delay incr. @ T_{op} (10y)

Worst case:

- Random inputs increase delay by 26%
- Hot-Aging increases delay by 40%

Results: Time to miss 10% guard [months]

Conclusions

- Exploration of relation between hardware degradation and temperature
- Analysis environment
 - Extraction of random and worst case input scenarios
 - Determination of how aging and temperature impact the circuit delay.
- Results indicate
 - If temperature is considered: degradation can increase by more than factor 2
 - If guard-banding is applied: circuits can enter malfunction states within months (random case) or even within weeks (critical case).
- There is a need for appropriate countermeasures

HotAging — Impact of Power Dissipation on Hardware Degradation

<u>Frank Sill Torres</u>^{1,2}, Alberto Garcia Ortiz², Rolf Drechsler^{1,2}

¹CPS, DFKI GmbH, Bremen Germany ²University of Bremen, Germany

